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Abstract 18 

Soil respiration (Rs), the flow of CO2 from the soil surface to the atmosphere, is one of the 19 

largest carbon fluxes in the terrestrial biosphere. The spatial variability of Rs is both large and 20 

poorly understood, limiting our ability to robustly scale it in time and space. One factor in Rs 21 

spatial variability is the autotrophic contribution from plant roots, but it is uncertain how the 22 

proximity of plants affects the magnitude and temperature sensitivity of RS. This study examined 23 

the effect of tree proximity on RS in the growing and dormant seasons, as well as during 24 

4 
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moisture-limited times, in a temperate, coastal, deciduous forest in eastern Maryland, USA. In a 25 

linear mixed-effects model, tree basal area within 5 m (BA5) exerted a significant positive effect 26 

on the temperature sensitivity of soil respiration. Soil moisture was the dominant control on RS 27 

during the dry portions of the year while soil moisture, temperature, and BA5 all exerted 28 

significant effects on RS in wetter periods. Our results suggest that autotrophic respiration is 29 

more sensitive to temperature than heterotrophic respiration at these sites, although we did not 30 

measure these source fluxes directly, and that soil respiration is highly moisture-sensitive, even 31 

in a record-rainfall year. The RS flux magnitudes (0.3-16.6 µmol m-2 s-1) and variability 32 

(coefficient of variability 10%-22% across plots) observed in this study were comparable to 33 

values observed over decades in similar forests. We estimate that four RS observations were 34 

required to be within 50% of the stand-level mean, and 311 to be within 5%, at 90% confidence. 35 

A better understanding of the spatial interactions between plants and microbes that results in 36 

measured RS is necessary to link these processes with large scale soil-to-atmosphere C fluxes. 37 

 38 

Introduction 39 

Soil respiration (Rs), the flow of CO2 from the soil to the atmosphere, is an important 40 

carbon (C) flux at ecosystem (Granier et al., 2000) to global scales. Rs is among the largest C 41 

fluxes in the terrestrial biosphere (Bond-Lamberty, 2018; Le Quéré et al., 2018), but poorly 42 

constrained at large scales, and thus it is important to understand its variability and sensitivity to 43 

processes such as land use and climate changes (Hursh et al., 2017; Schlesinger and Andrews, 44 

2000). Unlike other large C fluxes such as net primary production, net ecosystem exchange, 45 

and gross primary production, Rs cannot be measured, even indirectly, at scales larger than ~1 46 

m2 (Bond-Lamberty et al., 2016), limiting our ability to robustly scale it in time and space.  47 

One obstacle to robust measurements is that the spatial variability of Rs is both large 48 

and poorly understood. Controls on the spatial variability of Rs differ among sites and 49 

ecosystems and include plant species, leaf habit, ecosystem productivity (Reichstein et al., 50 
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2003), soil temperature, moisture, spatial variability of vegetation, management, and soil 51 

compaction (Epron et al., 2004). This high variability has consequences for the sampling 52 

strategy required to accurately measure Rs at the stand scale (Rodeghiero and Cescatti, 2008; 53 

Saiz et al., 2006) and limits our ability to upscale Rs measurements to eddy covariance tower 54 

scales (Barba et al., 2018). 55 

At large scales, Rs differs between vegetation types and biomes (Raich et al., 2002; 56 

Raich and Schlesinger, 1992), implying that the spatial distribution of vegetation might strongly 57 

affect Rs via plant root respiration, which constitutes ~50% of Rs in many ecosystems (Subke et 58 

al., 2006). At ecosystem scales, a number of studies have examined how the spatial distribution 59 

of Rs is affected by vegetation. Rs is typically higher closer to tree stems (Epron et al., 2004; 60 

Tang and Baldocchi, 2005), and with higher nearby stem density (Stegen et al., 2017). 61 

Photosynthesis is also a driver of the rhizospheric component of soil respiration (Hopkins et al., 62 

2013), and influences seasonal trends in root contribution to total soil respiration (Brændholt et 63 

al., 2018; Högberg et al., 2001). Any spatial influences of plants on Rs might be expected to be 64 

particularly strong in temperate, deciduous forests, as such forests tend to be especially 65 

productive (Gillman et al., 2015; Luyssaert et al., 2007).  66 

This study examines the effect of tree proximity on measured Rs in a mid-Atlantic, 67 

deciduous forest in the Chesapeake Bay, USA region. We hypothesized that: 68 

 69 

(i) the amount of basal area close to Rs measurement locations would exert a significant and 70 

positive effect on measured Rs after taking into account the effects of abiotic drivers; 71 

 72 

(ii) this effect would occur in the growing (leaf on) season, but not in the dormant (leaf off) 73 

season, because root respiration is much stronger during the growing season; and 74 

 75 

https://doi.org/10.5194/bg-2019-218
Preprint. Discussion started: 2 July 2019
c© Author(s) 2019. CC BY 4.0 License.



3 

(iii) this effect would be stronger during drier times of year, because trees might maintain access 76 

to deep soil moisture (Burgess et al., 1998) and thus continue respiring even when the surface 77 

soil is dry. 78 

 79 

To test these hypotheses we performed a spatially explicit analysis of one year of frequent Rs 80 

measurements in a temperate coastal deciduous forest in eastern Maryland, USA. To our 81 

knowledge, no study has examined the influences of trees on spatial variation of Rs in the 82 

Chesapeake Bay watershed, an area subject to rapid rates of sea level rise (Ezer and Corlett, 83 

2012; Sallenger et al., 2012) that may exert significant effects on the carbon cycling of coastal 84 

ecosystems (Rogers et al., 2019).  85 

 86 

Methods 87 

 88 

Site characteristics 89 

This study was conducted in a mid-Atlantic, temperate, deciduous forest at the 90 

Smithsonian Environmental Research Center (SERC) in Edgewater, MD, USA. Three sites were 91 

chosen along Muddy Creek, a stream draining into an arm of Chesapeake Bay. Each site was 92 

separated by ~1 km (Figure 1a). These sites were comprised of both lowland and upland forest 93 

with a mean annual precipitation of 1001 mm and mean annual temperature of 12.9°C (Pitz and 94 

Megonigal, 2017). Dominant tree species include Liriodendron tulipifera, Fagus grandifolia, and 95 

Quercus spp.; soil types vary between Collington, Wist, and Annapolis soil. (Table 1). At each 96 

site, three 20 m x 40 m plots were installed, separated by ~25 m and oriented perpendicular to 97 

the creek. The total elevation change between plots at each site was ~2 m. Within each plot, we 98 

installed 4, 20-cm diameter PVC collars, randomly separated from each other by 2–15 m, for a 99 

total of 36 measurement collars. Collars were installed ~1 week prior to the first sampling and 100 

left in place for the duration of the study. 101 
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 102 

Soil respiration measurements 103 

Soil respiration measurements were taken using an infrared gas analyzer (LI-8100A, LI-104 

COR Inc., Lincoln, NE) with a 20 cm diameter soil chamber attached. Measurements were 105 

taken every 10-14 days from April 2018 to April 2019. The IRGA measures concentrations every 106 

second over a one minute period and calculates the CO2 flux as the linear or exponential 107 

regression of CO2 accumulation in the closed chamber system over unit area and time; two 108 

successive measurements were taken at each collar and averaged. Vegetation was removed 109 

from inside the collar, and new vegetation was re-clipped as necessary, to remove any 110 

aboveground autotrophic flux, so that the IRGA was measuring only soil-to-atmosphere CO2. 111 

Soil moisture and temperature (T5) were also recorded at 5 cm depth, using auxiliary sensors 112 

attached to the LI-8100A, at the same time as soil respiration measurements. Temperature at 113 

20 cm depth (T20) was also recorded using a hand-held thermometer at the time of 114 

measurement. 115 

 116 

Tree proximity measurements 117 

We recorded distance from the soil collar, diameter at breast height (1.37 m), and 118 

species of each tree within a 15 meter radius of each soil respiration measurement point 119 

(Figure 1b).  Dead trees were included in the dataset but only account for < 1% of total forest 120 

basal area. Cumulative basal area was calculated at each 1 m radial distance from the collar, 121 

summing the cross-sectional areas of all trees within each distance. Tree root extent can be 122 

highly variable, but generally roots extend at least to the edge of the tree canopy (Stone and 123 

Kalisz, 1991). Mature tree canopies at SERC are ~5 m in radius (S. Pennington, personal 124 

observation), and we adopted this distance as an a priori assumption to test for the effect of 125 

basal area at 5 meters (BA5) on Rs. 126 

 127 
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Statistical analysis 128 

Respiration data were checked visually for artifacts or unusual outliers, but we did not 129 

exclude any data a priori. Data were then combined with the proximity measurements described 130 

above based on collar number. We used a linear mixed-effects model to test for the influence of 131 

BA5 on Rs, treating temperature, soil moisture, BA5 as fixed effects, and site as a random effect. 132 

To ensure homoschedasticity of model residuals, the dependent variable Rs was transformed by 133 

taking its natural logarithm. We used restricted maximum likelihood estimation using the lme4 134 

package (Bates et al., 2015) in R version 3.5.3 (R Development Core Team, 2019). All models 135 

were examined for influential outliers and deviations from normality. Non-significant terms were 136 

then eliminated using a forward-and-back stepwise algorithm (using the R package MASS 137 

version 7.3-47) based on the Akaike Information Criterion. Residuals from all fitted models were 138 

plotted and checked for trends or heteroschedasticity.  139 

Our secondary hypotheses, that effect of BA5 varies with growing season and soil 140 

moisture, were tested by subsetting the Rs data. We treated April 15-October 14 as the growing 141 

season, based on 2018 leaf-out and senescence, and October 15-April 14 as the dormant 142 

season. Soil moisture data were split up into equal thirds (low, <0.188 m3 m-3; medium, 0.188-143 

0.368 m3 m-3; and high, >0.368 m3 m-3; all values volumetric). We then applied the statistical 144 

model described above to each subset of the data.  145 

We used the spatial variability between collars within individual plots to estimate the 146 

number of samples required for a robust estimate of the Rs ‘population mean’, i.e., a spatially-147 

representative mean. Specifically, we used a Student’s t-test to calculate this based on the 148 

standard deviation of hourly Rs, the desired power of the test, and the allowable delta 149 

(difference from the true mean value), following Davidson et al. (2002). 150 

All code and data necessary to reproduce our results are available in our online GitHub 151 

repository (https://github.com/PNNL-PREMIS/PREMIS-ghg) and permanently archived at 152 

Figshare (DOI if accepted). 153 
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 154 

Results 155 

We measured Rs, soil temperature, and soil moisture on 31 different days across the 156 

one-year period (Figure 2). Soil temperatures ranged from 0.1 to 27.7 ℃ (at 5 cm) and 1.7 to 157 

24.4 ℃ (at 20 cm); volumetric soil moisture values were 0.01-0.56. Rs fluxes ranged from 0.17 158 

µmol m-2 s-1 (in March 2019) to 16.55 µmol m-2 s-1 (in July 2018). The coefficient of variability 159 

(CV) between collars within plots, a measure of spatial variability, ranged from 10% to 22%. 160 

This implied that a large number of samples was required to estimate soil respiration accurately 161 

(Table 2). 162 

There was large variability in the basal area and number of trees close to the 163 

measurement collars (Figure 3). The mean number of trees within 1 m, 5 m, and 10 m distance 164 

were one, six, and 20 trees (with respective nearby basal areas of 0.0002 m2, 0.24 m2, and 0.91 165 

m2). Within our maximum radius of measurement, 15 m, there were on average 42 trees and 1.7 166 

m2 of cumulative basal area, ranging from a minimum of 0.55 m2 to a maximum of 3.55 m2. The 167 

forest was thus highly spatially variable in its distribution of trees relative to the Rs measurement 168 

collars. 169 

 170 

Effect of BA on Rs 171 

The linear mixed-effects model using temperature, soil moisture, and basal area within 172 

five meters (BA5) predicted almost half of the Rs variability (conditional R2 = 0.40). BA5 was not 173 

significant by itself in a Type III ANOVA using this model (χ2 = 0.495, P = 0.482), but exhibited 174 

strong and significant interactions with T5 and T20 (Table 3). In addition, the residuals of a model 175 

fit without BA5 had a significant trend with BA5 (Figure 4). Separating the data into growing- and 176 

dormant-season subsets provided contrasting results. In the growing season, model outputs 177 

were similar to those of the full year model, with BA5 having significant interactions with T5 and 178 
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T20 (data not shown). The dormant season model, however, was quite different: only T20 (P ≤ 179 

0.001) and soil moisture (P = 0.0009) were significant terms. In addition, the dormant season 180 

model explained more of the Rs variability (AIC = 258.75, marginal R2 = 0.52). In summary, 181 

collars with higher basal area within 5 m had significantly higher temperature sensitivity of soil 182 

respiration after controlling for temperature and moisture effects, while basal area within 5 m of 183 

sampling points was not correlated with Rs during the dormant season.   184 

Our third hypothesis was that any basal area effect on Rs would be strongest in the 185 

driest times of the year, when microbial respiration at the surface soil declines as the soil dries, 186 

but (we speculated) trees would maintain access to deeper soil moisture. There were in fact 187 

strong differences between the driest and wettest thirds of the data, but our hypothesis was not 188 

supported. In the driest third of the data, neither BA5 nor its interaction with T5 was significant (P 189 

= 0.1775 and 0.1078 respectively); T20 was never significant; and the dominant control was 190 

instead soil moisture (χ2 = 20.93, P < 0.001). In contrast, the wettest-third model resembled the 191 

full-year model, with BA5 interacting with temperature, and soil moisture also significant. 192 

 193 

Sensitivity test 194 

Our a priori choice of 5 m for the basal area test was one of many possible choices, and 195 

could potentially bias the results, as the actual extent of tree roots at these sites is unknown. 196 

Re-running the main statistical test across a wide range of distances, however, showed that 197 

basal area by itself was almost never significant, while its interactions with T5 and T20 were 198 

almost always significant (Figure 5). Generally the BA effects were not significant at short (< 3 199 

m) distances; this is expected, given that few collars were that close to trees. Interestingly, the 200 

BA effects remained significant all the way to our maximum measured distance of 15 m. In 201 

summary, our analytical choice of a 5 m radius did not appear to bias our results.  202 

 203 
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Discussion 204 

 205 

Results and implications of Rs values 206 

The Rs fluxes observed in this study, 0.3-16.6 µmol m-2 s-1, were comparable to values in 207 

similar forests (Giasson et al., 2013) and from the Soil Respiration Database (Bond-Lamberty 208 

and Thomson, 2010), a synthesis of annual Rs studies (0 to 14.7 µmol m-2 s-1, n = 1281 209 

temperate deciduous studies). We observed a collar-to-collar Rs CV of 10.5-21.5%, a value also 210 

comparable to previous studies. In a study of Rs in conifer forests and grasslands, Rodeghiero 211 

(2008) reported 28.9-41.5% variability, Davidson et al. (2000) about 30% in forest ecosystems, 212 

and a much broader range (0.11-84.5%) for temperature, deciduous forests from the SRDB. 213 

Sample size requirements to estimate annual Rs were high at SERC compared to 214 

previous studies. For example, to be within 10% of the mean Rs flux at 95% confidence required 215 

from 41 (Davidson et al., 2002) in Harvard Forest, to 72 (Adachi et al., 2005) in a secondary 216 

forest, to 133 sample points in this study. This high variability between studies likely arises 217 

because controls on the spatial variability of Rs differ among sites and ecosystems. Within forest 218 

biomes, topography and stand structure (Søe and Buchmann, 2005) can also be dominant 219 

controls that likely contribute to the high variability seen in this study. 220 

 221 

Interactions between basal area and temperature sensitivity on Rs  222 

Many studies have examined whether autotrophic respiration (Ra) or heterotrophic 223 

respiration (Rh) is more temperature-sensitive, and reached varying conclusions (Aguilos et al., 224 

2011; Boone et al., 1998; Wang et al., 2010). In this study, however, collars with higher basal 225 

area within 5 m had significantly higher temperature sensitivity of soil respiration after controlling 226 

for temperature and moisture effects. This suggests that Ra is more sensitive to temperature 227 

than Rh at these sites, even though we did not directly measure the autotrophic and 228 

heterotrophic source fluxes contributing to the overall Rs flux.  229 
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Mechanistically, these findings could be explained by a number of processes.  For 230 

example, when substrate supply from root exudates is ample, Rs tends to be more sensitive to 231 

temperature (Luo and Zhou, 2006), presumably because Rs can be tightly coupled with 232 

photosynthesis and thus roots, which access the photosynthate before microbes, respond more 233 

strongly to temperature changes. There is also abundant evidence that soil moisture influences 234 

temperature sensitivity: Suseela et al. (2012), for example, found that Rs is less sensitive to 235 

temperature during water-limited times. If trees’ roots have access to water consistently, their 236 

respiratory flux Ra measured at the soil surface as part of Rs will be more temperature-sensitive 237 

on average, because Ra will be limited by soil moisture less frequently (Misson et al., 2006). It is 238 

important to note that these various mechanisms are not mutually exclusive. 239 

 240 

Soil moisture controls on BA significance 241 

We hypothesized that BA5 effect would be particularly strong during the driest third of the 242 

year, but found that only soil moisture controlled Rs during these periods, while neither 243 

temperature nor tree proximity (BA5) was significant. This demonstrates that Rs is highly 244 

moisture-sensitive at these sites, but does not support our hypothesis that trees might have 245 

access to deeper or different water sources than surface soil microbes. Soil moisture is 246 

considered to be a primary Rs control in Mediterranean and desert ecosystems (Cable et al., 247 

2010), but interestingly even this deciduous forest, in a year with record rainfall (National 248 

Weather Service, 2019), experienced significant moisture restrictions on Rs. Spatial variation in 249 

soil moisture (CV 2.5%-18.7% between plots) was probably due to the topographic variability of 250 

our study site, which allowed some measurement points to drain more quickly than others, 251 

producing a wide range of soil moisture conditions. 252 

 253 

Dormant season Rs controls 254 
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Tree basal area within 5 m of our Rs sampling points was not significant in the dormant 255 

season model, supporting our hypothesis that total Ra contribution is often lower during the 256 

dormant reason than the growing season (Hanson et al., 2000), which suggests that Ra 257 

contributes less to Rs during the dormant season. This is expected, given the physiological link 258 

between photosynthesis and root respiration (Sprugel et al., 1995). Interestingly, T5 was not 259 

significant in the dormant season model, but rather T20 was the dominant control. The study site 260 

is in a mid-Atlantic, temperate location with cold air temperatures during the winter. Deeper soils 261 

are more insulated from cold air temperatures, allowing more favorable conditions for Rs and 262 

potentially making T20 a dominant control during these times.  263 

 264 

Limitations of this study 265 

A number of limitations should be noted in our study design and execution. First, this 266 

was not a fully spatially-explicit analysis; we did not map the collars relative to each other, nor 267 

construct a full spatial map of the forest stands (Atkins et al., 2018). Such mapping can be 268 

useful to examine the Rs spatial structure in more detail, as for example in Stegen et al. (2017), 269 

but our approach to mapping relative distances to trees provides an alternative spatial study 270 

construct. In a similar vein, Tang and Baldocchi (2005) measured Rs within a transect of two oak 271 

trees to draw inferences on the spatially variable contribution of Rh and Ra. This study design 272 

still provides useful spatial information, however: the 15 m max distance in Figure 5 implies that 273 

the range of a semivariogram, i.e. the distance of maximum autocorrelation, would be at least 274 

this far. This means that BA remained significant all the way to our maximum measured 275 

distance of 15 m, implying that the spatial influence of large trees persisted at least this far 276 

(Högberg et al., 2001).  277 

 278 

This study tested the effect of basal area on Rs, based on the assumption that BA is 279 

proportional to fine root biomass, the respiration of which is driven (with some time lag) by 280 
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photosynthesis and this in turn drives root respiration dynamics (Vose and Ryan, 2002). Stems 281 

with a diameter below 2 cm and understory were not inventoried or, as a result, included in the 282 

hypothesis-testing statistical models. If root respiration is instead correlated with number of 283 

stems, which are disproportionately small due to forest demographics, this would bias our 284 

results. There are not many understory/saplings at these sites (Table 1), however. 285 

 286 

Conclusion 287 

Autotrophic respiration was found to be more sensitive to temperature than heterotrophic 288 

respiration, and collars with higher basal area within 5 m had significantly higher temperature 289 

sensitivity. Rs is also highly moisture-sensitive at these sites, with large differences among Rs 290 

controls in low- versus high-moisture times. These findings, in conjunction with large sample 291 

size requirements, suggest soil respiration at this site to be highly dynamic and variable. This 292 

could have implications for measurement requirements in sites with particular stand structures. 293 

A better understanding of the spatial interactions between plants and microbes that results in 294 

measured Rs is necessary to link these processes with collar- and ecosystem-scale soil-to-295 

atmosphere C fluxes. 296 
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Table 1 | Study site characteristics of each site along Muddy Creek, including trees per hectare, 464 

cumulative basal area, main soil types, and dominant tree species by percent of basal area. 465 

Values are mean ± standard deviation of N=3, 800 m2 plots. 466 

 467 

Site Trees (ha-1) 

BA (m2 ha-

1) Dominant Soil Type 

Dominant Tree Species (by 

BA %) 

GCReW 

(38.876 °N, 

76.553 °W) 

637.5 ± 57.3 44.6 ± 4 Collington-Wist complex; 

Collington and Annapolis 

soils 

28% Liriodendron tulipifera 

11% Quercus spp. 

11% Fagus grandifolia 

Canoe Shed 

(38.884 °N, 

76.557 °W) 

529.2 ± 93.8 40.4 ± 6 Annapolis fine sandy 

loam 

26% Quercus spp.,  

23% L. tulipifera 

20% F. grandifolia 

North Branch 

(38.887 °N, 

76.563 °W) 

806.9 ± 180.7 34.5 ± 7.8 Collington and Annapolis 

soils; Collington, Wist, 

and Westphalia soils 

42% F. grandifolia 

26% Quercus spp. 

12% Liquidambar styraciflua 

 468 
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Table 2. Sample size required to estimate soil respiration with a particular error (delta, left 470 

column, fraction of mean flux), for different statistical power values. Values are mean ± standard 471 

deviation between plots. “Power” is the probability that the test rejects the null hypothesis when 472 

a specific alternative hypothesis is true, and informally connotes the degree of confidence that 473 

the measurement within some delta value of the true mean.  474 

 475 

 Power (1 - β) 

Delta 0.5 0.6 0.7 0.8 0.9 0.95 

0.05 63 ± 21 97 ± 33 147 ± 50 226 ± 76 373 ± 124 532 ± 175 

0.10 16 ± 6 25 ± 9 37 ± 13 57 ± 19 94 ± 31 133 ± 44 

0.25 3 ± 1 4 ± 2 6 ± 2 10 ± 4 15 ± 5 22 ± 7 

0.50 1 ± 1 1 ± 1 2 ± 1 3 ± 1 4 ± 2 6 ± 2 

 476 

 477 
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Table 3. Summary of linear mixed-effects model testing main hypothesis of the effect of nearby 479 

tree basal area on soil respiration (the dependent variable). Terms tested include soil 480 

temperature at 5 and 20 cm (T5 and T20 respectively), basal area (BA), and soil moisture (SM). 481 

Model AIC = 662.7, marginal R2 = 0.72. 482 

 483 

  Value Std.Error DF t-value p-value 

(Intercept) -0.7824 0.1215 884 -6.4418 0.0000 

T5  0.0146 0.0080 884 1.8327 0.0672 

BA  -0.1162 0.1659 884 -0.7006 0.4837 

T20 0.0873 0.0093 884 9.3562 0.0000 

SM 3.3107 0.5627 884 5.8834 0.0000 

SM2 -5.4007 0.8867 884 -6.0913 0.0000 

T5:BA 0.1165 0.0297 884 3.9144 0.0001 

BA:T20  -0.1018 0.0332 884 -3.0667 0.0022 

 484 
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Figure 1 | a) Tree proximity measurement schematic. Distance to each tree was recorded within 486 

a 15 meter radius of each soil respiration measurement point, along with DBH and species. b) 487 

Map of the Smithsonian Environmental Research Center with the three sites labeled in black. 488 
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Figure 2 | Mean flux over time from April 2018 to April 2019 for 36 measurement points across 508 

three sites; blue line shows the seasonal trend using a loess smoother. 509 
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Figure 3 | Cumulative basal area for each collar (N = 36) up to 15 meters; color indicates 512 

number of trees at each distance.  513 
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Figure 4. Residuals of a soil respiration model, incorporating temperature and soil moisture as 516 

independent variables, versus cumulative tree basal area within 5 m, by site. Each point is an 517 

individual observation (cf. Figure 2). Regression lines are shown for each site; black line is the 518 

overall trend. 519 
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Figure 5. Test of robustness of results, run at various distances from measurement collars (x 522 

axis). Figures shows the significance (chi square p-value from Type III ANOVA of the linear 523 

mixed effects model, y axis; note logarithmic scale) of basal area (BA), as well as the interaction 524 

of BA and temperatures at 5 and 20 cm (T5 and T20 respectively). Horizontal dashed line shows 525 

the standard 0.05 significance cutoff; vertical dashed line the 5 m radius used in Table 3 and 526 

Figure 4 results. Note that ‘missing’ green and blue dots at distances < 5 m mean that the 527 

terms were dropped from the model and are thus not significant. 528 
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